Objectives:

- Define an antiderivative.
- Compute the antiderivatives of some familiar functions.

Let	f(x) be any function. We call $g(x)$ an	antid	lerivative of $f(x)$	
if _	g'(x) = f(x)			
For	example, if $f(x) = 3$, some antiderivatives of f	(x) are:	3x, 3x + 10, 3x - 10,000	
Αv	vay we could represent all of these solutions is:	3x +	c where c is any constant.	

In general, we write the antiderviative of f(x) as F(x) + c where F'(x) = f(x)

f(x)	Antiderivative of $f(x)$	
f(x) = 0	F(x) = c	
f(x) = 5	F(x) = 5x + c	
$f(x) = 3x^2$	$F(x) = x^3$	
$f(x) = x^2$	$F(x) = \frac{1}{3}x^3 + c$	
f(x) = x	$F(x) = \frac{1}{2}x^2 + c$	
$f(x) = x^n$	$F(x) = \frac{1}{n+1}x^{n+1} + c$	
$f(x) = \frac{1}{x}$	$F(x) = \ln x + c$	
$f(x) = 5x^2$	$F(x) = \frac{5}{3}x^2 + c$	
f(x) = x - 3	$F(x) = \frac{1}{2}x^2 - 3x + c$	
$f(x) = e^x$	$F(x) = e^x + c + c$	
$f(x) = b^x$	$F(x) = \frac{b^x}{\ln(b)} + c$	

Some Antiderivative Rules:

If the antiderivative of f(x) is F(x) + c and the antiderivative of g(x) is G(x) + c then the antiderivative of f(x) + g(x) is

$$F(x) + G(x) + c$$

If the antiderivative of f(x) is F(x) + c and b is a constant, the antiderivative of $b \cdot f(x)$ is

 $b \cdot F(x) + c$

Examples: Find the antiderivatives, (Don't forget "+c"!):

1. $F'(x) = 3x^4 + 7x^2 + 5$ $f(x) = \frac{3}{5}x^5 + \frac{7}{3}x^2 + 5x + c$ 2. $G'(z) = \frac{z^2 + 1}{\sqrt{z}}$ $G'(z) = z^{3/2} + z^{-1/2}$ so $G(z) = \frac{2}{5}z^{5/2} - 2z^{1/2} + c$ 3. $k'(t) = \frac{2}{3} + \frac{4}{t} + \frac{7}{\sqrt{t}}$ $k'(t) = \frac{2}{3} + 4t^{-1} + 7t^{-1/2}$ so $k(t) = \frac{2}{3}t + 4\ln(t) + 14t^{1/2} + c$

More antiderivatives!

f(x)	Antiderivative of $f(x)$
$f(x) = \cos(x)$	$F(x) = \sin(x) + c$
$f(x) = \sin(x)$	$F(x) = -\cos(x) + c$
$f(x) = (\sec(x))^2$	$F(x) = \tan(x) + c$
$f(x) = \sec(x)\tan(x)$	$F(x) = \sec(x) + c$
$f(x) = \frac{1}{1+x^2}$	$F(x) = \arctan(x) + c$
$f(x) = \frac{1}{\sqrt{1-x^2}}$	$F(x) = \arcsin(x) + c$

More Examples: Find the antiderivatives:

1. $H'(x) = \sin(x) + \pi + (\sec(x))^2$ $H(x) = -\cos(x) + \pi x + \tan(x) + c$ 2. $s'(t) = 2^x - \cos(x)$ $s(t) = \frac{1}{\ln(2)}2^x - \sin(x) + c$

(Did you remember to include "+c"?)

Initial value problems: Given f'(x), we have seen that we can find f(x) + c. If we also know the value of f(x) at some point, we can find the value of the constant c.

1. s'(t) = -32t + 8 and s(0) = 40. Find an equation for s(t).

 $s(t) = -16t^2 + 8t + c$. Now use s(0) = 40. $40 = -16(0)^2 + 8(0) + c$, so 40 = c. So we know $s(t) = -16t^2 + 8t + 40$.

2. $f''(\theta) = \sin(\theta) + \cos(\theta)$ and f'(0) = 3, f(0) = 4. (Find $f(\theta)$.) $f'(\theta) = -\cos(\theta) + \sin(\theta) + c$. So $3 = -\cos(0) + \sin(0) + c = -1 + c$ and so c = 4. Then $f'(\theta) = -\cos(\theta) + \sin(\theta) + 4$, so $f(\theta) = -\sin(\theta) - \cos(\theta) + 4\theta + b$. Now $4 = -\sin(0) - \cos(0) + 4(0) + b = -1 + b$ so b = 5.

Then $f(\theta) = -\sin(\theta) - \cos(\theta) + 4\theta + 5$

3. A stopped car accelerated at $4\frac{\text{m}}{\text{sec}^2}$ for 6 sec. Find a formula for velocity, v(t), and a formula for position, s(t).

Since the car started from a stationary position, we know v(0) = 0 and s(0) = 0. Acceleration is the derivative of velocity, so to find v(t) we take the antiderivative of a(t) = 4. Then v(t) = 4t + c. Use initial condition to solve for c: 0 = 4(0) + c so c = 0. Then v(t) = 4t. Velocity is the derivative of position, so to find s(t) we take the antiderivative of v(t). Then $s(t) = 2t^2 + b$. Use initial condition: $0 = 2(0)^2 + b$ leads to b = 0. So $s(t) = 2t^2$.

- 4. Acceleration due to gravity on earth is $-32 \frac{\text{ft}}{\text{sec}^2}$. A pumpkin is dropped from a 64 ft tall building. How long does it take to hit the ground and what is the impact velocity?
 - $v(0) = 0, \ s(0) = 64$ v(t) = -32t, $s(t) = -16t^2 + 64 = -16(t^2 - 4) = -16(t + 2)(t - 2)$ so the pumpkin hits the ground at t = 2 sec. v(2) = -32(2) = -64 so the impact velocity is $-64\frac{\text{ft}}{\text{sec}}$