Objectives:

- Define an antiderivative.
- Compute the antiderivatives of some familiar functions.

Let $f(x)$ be any function. We call $g(x)$ an antiderivative of $f(x)$
if \qquad

$$
g^{\prime}(x)=f(x)
$$

For example, if $f(x)=3$, some antiderivatives of $f(x)$ are: $3 x, 3 x+10,3 x-10,000$

A way we could represent all of these solutions is: $\quad 3 x+c$ where c is any constant.
In general, we write the antiderviative of $f(x)$ as

$$
F(x)+c \text { where } F^{\prime}(x)=f(x)
$$

$f(x)$	Antiderivative of $f(x)$
$f(x)=0$	$F(x)=c$
$f(x)=5$	$F(x)=5 x+c$
$f(x)=3 x^{2}$	$F(x)=x^{3}$
$f(x)=x^{2}$	$F(x)=\frac{1}{3} x^{3}+c$
$f(x)=x$	$F(x)=\frac{1}{2} x^{2}+c$
$f(x)=x^{n}$	$F(x)=\frac{1}{n+1} x^{n+1}+c$
$f(x)=\frac{1}{x}$	$F(x)=\ln \|x\|+c$
$f(x)=5 x^{2}$	$F(x)=\frac{5}{3} x^{2}+c$
$f(x)=x-3$	$F(x)=\frac{1}{2} x^{2}-3 x+c$
$f(x)=e^{x}$	$F(x)=e^{x}+c+c$
$f(x)=b^{x}$	$F(x)=\frac{b^{x}}{\ln (b)}+c$
f	

Some Antiderivative Rules:

If the antiderivative of $f(x)$ is $F(x)+c$ and the antiderivative of $g(x)$ is $G(x)+c$ then the antiderivative of $f(x)+g(x)$ is

$$
F(x)+G(x)+c
$$

If the antiderivative of $f(x)$ is $F(x)+c$ and b is a constant, the antiderviative of $b \cdot f(x)$ is

$$
b \cdot F(x)+c
$$

Examples: Find the antiderivatives, (Don't forget " $+c$ "!):

1. $F^{\prime}(x)=3 x^{4}+7 x^{2}+5$

$$
f(x)=\frac{3}{5} x^{5}+\frac{7}{3} x^{2}+5 x+c
$$

2. $G^{\prime}(z)=\frac{z^{2}+1}{\sqrt{z}}$

$$
G^{\prime}(z)=z^{3 / 2}+z^{-1 / 2} \text { so } G(z)=\frac{2}{5} z^{5 / 2}-2 z^{1 / 2}+c
$$

3. $k^{\prime}(t)=\frac{2}{3}+\frac{4}{t}+\frac{7}{\sqrt{t}}$

$$
k^{\prime}(t)=\frac{2}{3}+4 t^{-1}+7 t^{-1 / 2} \text { so } k(t)=\frac{2}{3} t+4 \ln (t)+14 t^{1 / 2}+c
$$

More antiderivatives!

$f(x)$	Antiderivative of $f(x)$
$f(x)=\cos (x)$	$F(x)=\sin (x)+c$
$f(x)=\sin (x)$	$F(x)=-\cos (x)+c$
$f(x)=(\sec (x))^{2}$	$F(x)=\tan (x)+c$
$f(x)=\sec (x) \tan (x)$	$F(x)=\sec (x)+c$
$f(x)=\frac{1}{1+x^{2}}$	$F(x)=\arctan (x)+c$
$f(x)=\frac{1}{\sqrt{1-x^{2}}}$	$F(x)=\arcsin (x)+c$

More Examples: Find the antiderivatives:

1. $H^{\prime}(x)=\sin (x)+\pi+(\sec (x))^{2}$

$$
H(x)=-\cos (x)+\pi x+\tan (x)+c
$$

2. $s^{\prime}(t)=2^{x}-\cos (x)$

$$
s(t)=\frac{1}{\ln (2)} 2^{x}-\sin (x)+c
$$

(Did you remember to include " $+c$ "?)
Initial value problems: Given $f^{\prime}(x)$, we have seen that we can find $f(x)+c$. If we also know the value of $f(x)$ at some point, we can find the value of the constant c.

1. $s^{\prime}(t)=-32 t+8$ and $s(0)=40$. Find an equation for $s(t)$.

$$
s(t)=-16 t^{2}+8 t+c . \text { Now use } s(0)=40.40=-16(0)^{2}+8(0)+c, \text { so } 40=c . \text { So we know }
$$ $s(t)=-16 t^{2}+8 t+40$.

2. $f^{\prime \prime}(\theta)=\sin (\theta)+\cos (\theta)$ and $f^{\prime}(0)=3, f(0)=4$. (Find $f(\theta)$.)
$f^{\prime}(\theta)=-\cos (\theta)+\sin (\theta)+c$.
So $3=-\cos (0)+\sin (0)+c=-1+c$ and so $c=4$.
Then $f^{\prime}(\theta)=-\cos (\theta)+\sin (\theta)+4$, so $f(\theta)=-\sin (\theta)-\cos (\theta)+4 \theta+b$.
Now $4=-\sin (0)-\cos (0)+4(0)+b=-1+b$ so $b=5$.
Then $f(\theta)=-\sin (\theta)-\cos (\theta)+4 \theta+5$
3. A stopped car accelerated at $4 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}$ for 6 sec . Find a formula for velocity, $v(t)$, and a formula for position, $s(t)$.
Since the car started from a stationary position, we know $v(0)=0$ and $s(0)=0$.
Acceleration is the derivative of velocity, so to find $v(t)$ we take the antiderivative of $a(t)=4$. Then $v(t)=4 t+c$. Use initial condition to solve for $c: 0=4(0)+c$ so $c=0$. Then $v(t)=4 t$. Velocity is the derivative of position, so to find $s(t)$ we take the antiderivative of $v(t)$. Then $s(t)=2 t^{2}+b$. Use initial condition: $0=2(0)^{2}+b$ leads to $b=0$. So $s(t)=2 t^{2}$.
4. Acceleration due to gravity on earth is $-32 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}$. A pumpkin is dropped from a 64 ft tall building. How long does it take to hit the ground and what is the impact velocity?
$v(0)=0, s(0)=64$
$v(t)=-32 t$,
$s(t)=-16 t^{2}+64=-16\left(t^{2}-4\right)=-16(t+2)(t-2)$ so the pumpkin hits the ground at $t=2 \mathrm{sec}$. $v(2)=-32(2)=-64$ so the impact velocity is $-64 \frac{\mathrm{ft}}{\mathrm{sec}}$
